Developing Cuprous Oxide Thin Film Characterization Techniques to Illuminate Efficiency-Limiting Mechanisms in Photovoltaic Applications by Riley

نویسنده

  • Eric Brandt
چکیده

Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy, with its extraordinary resource base, is one of the most feasible long-term options for satisfying energy demand with minimal environmental impact. However, solar photovoltaic panels remain expensive and employ materials whose resource bases cannot satisfy global, terawatt-level penetration. This necessitates the development of cheap, earth-abundant semiconductors for solar conversion such as cuprous oxide (Cu2O). Poor solar energy conversion efficiency (<2%) has hindered the development of this material, yet it is not well understood what is preventing the material from approaching the idealized maximum efficiency of 20%. The present work aims to develop a thorough characterization method for Cu2O thin films fabricated through a physical vapor deposition (PVD) process known as reactive direct-current magnetron sputtering. This both provides a platform for material analysis and an opportunity to adapt a typically high-throughput manufacturing method to make high quality thin films. Spectrophotometry, Hall Effect mobility measurement, and photoelectrochemical cell techniques are used in succession to determine the absorption and transport properties. The films are found to have a direct forbidden bandgap of 1.93 eV, with an absorption coefficient of greater than 10 cm for photons carrying energy in excess of 2.6 eV. Majority carrier mobility is measured as 58.1 cm/V⋅s, approaching the levels of monocrystalline oxidized films in literature. These high mobilities indicate that with carrier lifetime >10 nanoseconds, minority carrier diffusion length could easily exceed the film thickness. The photoelectrochemical minority carrier diffusion length measurement achieves success on gallium arsenide test samples, determining flat-band potential, quantum efficiency, and minority carrier diffusion length, paving the way for future Cu2O measurement. Future work may apply this test procedure to fully characterize other materials, and eventually lead to solar cell fabrication. Thesis Supervisor: Tonio Buonassisi Title: SMA Assistant Professor of Mechanical Engineering and Manufacturing

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide hetero...

متن کامل

Fabrication and characterization of combined metallic nanogratings and ITO electrodes for organic photovoltaic cells

Organic photovoltaic devices are interesting alternatives to conventional silicon based photovoltaic cells, due to potentially lower material costs and energy consumption during the fabrication process. However, the energy conversion efficiency of organic photovoltaic cells may still be improved. One possible approach is a combination with metallic nanostructures to improve light absorption pro...

متن کامل

Surface-Enhanced Raman Scattering on Hierarchical Porous Cuprous Oxide Nanostructures in Nanoshell and Thin-Film Geometries.

Understanding the mechanism of surface-enhanced Raman scattering (SERS) of molecules on semiconductor nanostructures is directly related to our capabilities of designing and optimizing new SERS-active substrates for broad applications in the field of molecular detection and characterization. Here, we present an exploration of using cuprous oxide nanostructures with hierarchical porosity for enh...

متن کامل

Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells.

The power conversion efficiency of solar cells based on copper (I) oxide (Cu2 O) is enhanced by atomic layer deposition of a thin gallium oxide (Ga2 O3 ) layer. By improving band-alignment and passivating interface defects, the device exhibits an open-circuit voltage of 1.20 V and an efficiency of 3.97%, showing potential of over 7% efficiency.

متن کامل

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011